From Tradition to Science: Exploring the Therapeutic Potential of Cow **Dung in Human Health**

Monika Prajapati¹, Sapna Thakur²

¹Assistant Professor, Department of Rasashastra & Bhaisjya Kalpan, ²Consultant, Department of Kaya ChikitsaNootan Ayurvedic College & Research Centre, Sankalchand Patel University, Visnagar.

Abstract

The article explores the therapeutic potential of cow dung, a substance traditionally used in various cultures for its medicinal properties. The study aims to bridge traditional knowledge with modern scientific understanding by reviewing the bioactive compounds present in cow dung and their health benefits. Methods involved an extensive literature review of studies on the chemical composition, bioactive components, and pharmacological properties of cow dung. Key bioactive compounds identified include phenols, flavonoids, and sterols, which have demonstrated antimicrobial, anti-inflammatory, and antioxidant activities. Results suggest that cow dung has diverse applications in traditional medicine, particularly in wound healing, skin diseases, and gastrointestinal disorders. It also highlights its potential in enhancing immunity and promoting overall health. The review emphasizes the need for further clinical trials to validate the therapeutic claims and understand the mechanisms underlying these health benefits. In conclusion, cow dung, when scientifically studied, shows promise as a natural health agent, supporting traditional medicinal practices with modern evidence. However, more research is necessary to fully harness its potential for human health applications.

Keywords: Cow dung, Health benefits, Natural health agent, Traditional knowledge, Therapeutic potential

Corresponding Author: Dr Monika Prajapati, Assistant Professor, Department of Rasashastra & Bhaisiya Kalpan, Nootan Ayurvedic College & Research Centre, Sankalchand Patel University, Visnagar. 9023444527, 9586858971. drmonikaprajapati@nah.spu.ac.in

Date of Submission: 21 January 2024 Date of Revision: 18 Februray 2024 Date of Acceptance: 30 March 2024

Introduction

Cow dung, a natural byproduct of the bovine digestive process, has been an essential element of traditional medicine and health practices across the globe for centuries. Esteemed for its diverse applications, cow dung's value in human health is deeply rooted in its unique biochemical and microbial composition.

Rich in bioactive compounds such as phenols, flavonoids, antioxidants, and a variety of beneficial microorganisms, cow dung has been recognized for its potential to promote human health by offering antiinflammatory, antimicrobial, and immuneboosting properties.¹ Increasing research has illuminated the therapeutic capabilities

of cow dung, making it an area of growing interest in both traditional healing and modern medical science.

One of the most extensively studied aspects of cow dung is its antimicrobial properties. Cow dung contains naturally occurring microbial strains, including *Lactobacillus* and *Bacillus* species, known for their antibacterial and antifungal effects. These microorganisms have sparked interest for their potential to inhibit harmful pathogens, with possible applications in treating skin infections, promoting wound healing, and even purifying water.² This aligns with traditional practices, where cow dung has long been used as a disinfectant and healing agent in rural communities, highlighting its enduring role in folk medicine.³

In addition to its antimicrobial benefits, recent studies suggest that cow dung may a significant role in immune modulation. The microbial strains found in dung have shown promise in immune responses enhancing supporting gut health, offering possibilities for its use in probiotic therapies or as a natural immune booster.⁴ This exploration into the beneficial interactions between cow dung's microbial community and human health offers exciting potential for disease prevention and health maintenance.

Cow dung also holds a prominent place in traditional medicinal practices, particularly in Ayurveda and other folk medicine systems, where it is used for detoxification and skin health. The ash derived from cow dung, rich in essential minerals, has been applied topically for centuries to promote skin healing and health. Modern scientific inquiries are now seeking to validate and expand upon these traditional applications, further exploring cow dung's therapeutic potential.⁵

Beyond these microbial and topical benefits, cow dung is used in various cultural contexts across the world for its health-related applications. In the Chitral District of Pakistan, for example, dried cow dung is used as talcum powder for infants,⁶ while in certain parts of Nigeria and Cameroon, dried cow dung extracts are utilized to treat infections and are even added to soups as a therapeutic ingredient.⁷ Such practices, often passed down through generations, highlight the global and cultural diversity in the use of cow dung for health. Furthermore, ancient human practices of incorporating cow dung into treatments for humans and animals continue to inspire scientific new investigations, especially considering the potential for beneficial bacteria in human health.8

Widely referred to as a "gold mine," cow dung has immense value not only for its applications in agriculture, energy production, and environmental protection but also for its growing importance in human health. In Indian traditions, for instance, cow dung is revered as part of the sacred "Panchagavya," a mixture used in Ayurvedic medicine for various health benefits, further emphasizing its cultural and medicinal significance.⁹

This review aims to consolidate and critically analyze the wealth of scientific research on the bioactive compounds, therapeutic properties, and health benefits of cow dung. By examining the intersection of ancient wisdom and modern science, this article seeks to unlock new potentials for integrating cow dung into contemporary wellness and therapeutic practices, paving the way for sustainable health solutions in the modern world.

Aim:

The aim of this review is to examine the scientific literature on cow dung's potential

health benefits, with a focus on its bioactive compounds, antimicrobial effects, immune-supportive properties, and applications in traditional and modern medicine. By systematically analyzing these areas, the review seeks to clarify the scientific basis for cow dung's therapeutic uses and propose safe and sustainable health applications.

Objectives:

- 1. To examine the Bioactive Compounds Present in Cow Dung and Their Health Potential: This objective aims to analyze studies that identify and characterize the various bioactive components of cow dung, such as phenols, flavonoids, and antioxidants, and evaluate their potential therapeutic effects in areas like inflammation and disease prevention.
- 2. To investigate Antimicrobial and Antifungal Properties of Cow Dung: Cow dung has been shown to contain microorganisms and compounds with antibacterial and antifungal properties. This objective aims to assess the effectiveness of these properties against common human pathogens, which could support its use in disinfectants, wound care, and skin health etc.
- 3. To explore the Role of Cow Dung in Immune Modulation and Gut Health: Research suggests certain microbial strains in cow dung may help enhance immune response and support gut health. This objective will examine how these microbial interactions contribute to immune modulation, with implications for cow dung's potential as a natural immunomodulatory agent.
- 4. To evaluate Traditional and Ayurvedic Applications of Cow Dung and Their Scientific Basis: Traditional medicine, particularly Ayurveda, has utilized cow dung for various health purposes. This objective aims to review and

- scientifically validate the traditional applications of cow dung, such as in skin treatments and detoxification, to bridge traditional knowledge with contemporary science.
- 5. To assess the Safety and Potential Applications of Cow Dung in Health and Wellness Products: Considering dung's bioactive antimicrobial properties, this objective aims to review studies on the safety of for cow dung human health applications. It will also explore possible formulations for sustainable health products, contributing to ecofriendly health solutions.

Materials and Method

This review article is based on a comprehensive literature survey of peerreviewed scientific articles, books, and reputable reports focused on the properties and health applications of cow dung. The primary sources included articles from iournals related to microbiology, pharmacology, traditional medicine, and environmental science. Databases such as PubMed, Science Direct, JSTOR, and Google Scholar were searched to ensure a thorough and systematic collection of relevant studies.

The keywords used for the literature search included: "cow dung health benefits," "cow dung antimicrobial properties," "bioactive compounds in cow dung," "cow dung in traditional medicine," "immunomodulatory effects of cow dung." Only articles published in English from the year 2000 to the present were included to ensure the inclusion of recent research. focusing Studies on human applications, bioactive compounds, antimicrobial effects, immune responses, and traditional uses were prioritized.

Method:

- 1. Systematic Literature Review: A systematic approach was used to collect, filter, and analyze studies relevant to cow dung's health-related properties. The initial search identified approximately 150 articles, which were then screened by title and abstract for relevance to human health. After excluding articles that did not directly address health benefits, antimicrobial properties, immune modulation, or traditional uses, approximately 80 articles were selected for detailed review.
- 2. Data Extraction and Analysis: Data from selected studies were extracted into categories, including bioactive compounds, antimicrobial immune modulation, and traditional applications. Extraction focused on identifying the key findings, methodologies, and conclusions from each study. Special attention was given to identifying the active microbial strains and biochemical compounds in cow dung linked to potential therapeutic applications.
- 3. Quality Assessment and Inclusion Criteria: To ensure quality and relevance, studies were assessed based on methodological rigor, sample size, and clarity in describing the isolation of bioactive components. Priority was given to studies with in vitro, in vivo, or clinical evidence related to the health effects of cow dung or its components. Studies lacking detailed methodology or presenting ambiguous findings were excluded.
- 4. Comparative Analysis of Traditional and Scientific Perspectives: Traditional Ayurvedic and ethnomedicinal uses of cow dung were cross-referenced with scientific findings to assess any convergence or divergence between traditional knowledge and modern evidence. Sources were evaluated to

- determine if traditional uses could be supported by biochemical and microbiological data from recent studies.
- 5. Synthesis of Findings and Identification of Research Gaps: Extracted data were synthesized into thematic sections covering bioactive compounds, antimicrobial properties, immune modulation, and potential health applications. Research gaps were identified by comparing the available literature with ongoing health needs, such as the demand for natural antimicrobials and eco-friendly health products, to suggest future research directions.

Result

The systematic review of the literature on cow dung in human health has revealed several significant findings across multiple areas, including its bioactive composition, antimicrobial properties, immunemodulating effects, and traditional applications. These findings collectively highlight cow dung's diverse therapeutic potentials while also identifying areas requiring further study.

Bioactive Composition and Therapeutic Potential: Studies have demonstrated that cow dung contains a range of bioactive compounds, including phenolic acids, flavonoids, and enzymes with antioxidant anti-inflammatory properties (Chaudhary et al., 2021). These compounds are believed to neutralize free radicals and reduce inflammation, supporting potential applications in natural health products. Additionally, cow dung's rich microbial content, including beneficial bacteria such as Lactobacillus and Bacillus species, suggests further possibilities for therapeutic use in probiotic and skin health formulations.

In traditional practices, the dung of indigenous (desi) cows has been used to protect homes from ultraviolet radiation and as an organic manure for sustainable farming. Studies suggest that the dung of these cows may play a significant role in organic farming, owing to its high nutrient content and its eco-friendly benefits. Comparative studies on dung from desi and crossbred cows could further reveal differences in their nutrient profiles, supporting their value in organic agriculture. 10

Cow dung has long been valued for its antiseptic properties, believed to prevent diseases by killing harmful microbes. Traditionally, it has been used to clean floors, wash vessels, and rinse clothes, especially in Indian villages, where it is still practiced to keep living areas hygienic. 11,12 Recent research, such as that by Mozhi et al. (2018), confirms these beliefs, showing cow dung extract—especially the methanol variant—effectively combats pathogenic microbes. 13

Cow dung contains antifungal compounds, especially patulodin-like substances from bacteria like *Eupenicillium bovifimosum*, which inhibit pathogenic fungi. ¹⁴ This effect is enhanced when combined with cow urine, with studies showing cow dung and its extracts can effectively combat various harmful bacteria and fungi. ¹⁵

Burning cow dung patties and applying cow dung coatings are traditional methods to repel mosquitoes, flies, and pests, with the ash acting as a natural insect repellent. Combining cow dung with neem leaves or herbs like tulsi and lemon grass has proven effective, offering eco-friendly mosquito control without synthetic chemicals, as supported by studies from Mandavgane et al. (2005) and Mukherjee et al. (2020). 16-19

Unpublished data suggests cow dung smoke has antioxidant properties, with studies like Jirankalgikar et al. (2016) demonstrating its effectiveness.²⁰ Panchagavya ghrit, a ghee made from cow products, is also known for its antioxidant and hepatoprotective benefits, potentially aiding in degenerative diseases, cancer, and liver conditions.²¹⁻²³

Cow dung smoke, often combined with camphor in incense sticks, is traditionally used as a natural antimalarial measure.²⁴ Studies also suggest cow dung's odor has antimicrobial effects, potentially aiding tuberculosis patients by reducing TB-related microbes in their environment.²⁵

Antimicrobial Properties: A significant body of research highlights the potent antimicrobial effects of cow dung against various pathogens. In vitro studies have shown that the microbial strains in cow dung can inhibit common pathogens, including Staphylococcus aureus, Escherichia coli, and Candida albicans.²⁶ These findings align with traditional uses of cow dung as a natural disinfectant and underscore its potential as a sustainable alternative to synthetic antimicrobial agents, particularly in topical applications and rural health care settings.

Immune-Modulatory and Gut Health Benefits: The immune-supportive role of cow dung has been documented in recent studies, with findings suggesting that its microbial strains may positively influence immune response. Certain bacteria in cow dung, including species from Lactobacillus genus, have shown promise in balancing gut microbiota, enhancing immune resilience, and potentially acting as a natural immunomodulator.²⁷ This aligns with traditional Ayurvedic practices where cow dung is considered beneficial for overall vitality and immunity. However,

further clinical studies are needed to fully validate these effects in humans.

Validation of **Traditional** Ayurvedic Applications: **Traditional** Ayurvedic applications of cow dung, such as its use in wound healing and detoxification, were reviewed and found to have some scientific support. Cow dung ash, often used in Ayurveda, has demonstrated antibacterial activity that can support its use in traditional medicine as a disinfectant (Sharma & Tripathi, 2019). Additionally, cow dung's mineral composition, including calcium and magnesium, offers benefits in skin health, supporting its historical use in topical treatments. However, the need for standardized procedures and safety protocols remains crucial to ensure efficacy and minimize risks.

In Ayurveda, "Swedana" is a method used to purify Ativisha, which involves using cow's juice, known as gomeya rasa, as a key ingredient. This process using cow dung juice make a substance suitable for human consumption, helping by removing toxins and promoting overall detoxification of processed drug.²⁸ Cowpathy, an ancient system of medicine rooted in Ayurveda, is centered around the use of Panchagavya (a mixture of five cow-derived products) to enhance the immune system and protect the body from various diseases.²⁹ While some traditional texts mention the medicinal benefits of cow products, only a few claims have been scientifically validated. Notably, research has confirmed the beneficial properties of cow urine through patents, though there is limited evidence supporting the antimicrobial effects of cow dung.³⁰

Safety Considerations and Product Development: While cow dung exhibits promising health benefits, safety considerations are essential due to the potential for contamination with harmful pathogens if improperly handled. Studies

suggest that with controlled processing, cow dung can be safely used in health applications, particularly in products like natural disinfectants, wound dressings, and eco-friendly hygiene products.³¹ The need for rigorous quality control and further toxicological studies remains a critical recommendation for future product development.

Environmental Protection and Sustainable Farming: Cow dung's role in environmental preservation is significant. When burned, cow dung can neutralize certain radiation levels, and its use in rural household construction (coating walls with cow dung) has been shown to reduce the impact of environmental pollutants, As evidenced during the 1984 Bhopal gas leak, where those living in cow dung-coated homes were less affected. Cow dung is also used in India and Russia to shield atomic power centers from radiation. Additionally, the practice of burning cow dung with ghee strengthens the ozone layer and shields the from harmful solar radiation. Earth Furthermore, cow dung is used in water treatment to neutralize acidity, particularly in ponds, reducing water pollution.³²

Skin, Dental, and Eye Health Benefits: Cow dung is traditionally used for skin ailments, often in combination with neem leaves, to treat rashes and boils and also has potential as a natural and organic sunscreen, offering protection against harmful sun exposure.³³ Additionally. cow dung has applications in dental care, where it may help in polishing teeth and reducing toothaches. The smoke from burning cow dung is also traditionally believed to benefit eye health, potentially by cleansing and stimulating tear production.³⁴ A study has documented the use of Bos taurus L. urine, dung and the bile in the regions of South Africa and Nigeria for treating skin infections.³⁵

Disinfectant: Cow dung, along with its byproducts like ash and urine, has been found to be effective in purifying water, particularly in removing heavy metals, making it suitable for drinking. As a natural, eco-friendly, and cost-effective disinfectant, cow dung ash can serve as an alternative to chlorine in water purification, while also enhancing the mineral content of water. It has long been used as a pesticide, and recent studies have further established its water purifying and disinfecting properties.³⁶

A study has evaluated the effectiveness of cow dung ash (CDA) and activated cow dung ash (ACA) in removing organic contamination from wastewater. specifically landfill leachate. The results showed that ACA achieved up to 79% removal of Chemical Oxygen Demand (COD) at optimal conditions (30°C, pH 6.0) in 120 minutes, outperforming regular CDA, which removed 66% COD at pH 8.0. The study also found that ACA was 11-13% more efficient than CDA, with strong correlations to Freundlich and Langmuir adsorption isotherms (0.921 and 0.976, respectively).37

One another study has found that cow dung ash removed up to 96% of chromium at different initial concentrations and adsorbent doses. The adsorption process followed the Freundlich and Langmuir models, highlighting cow dung ash as a promising material for metal ion removal from aqueous solutions.³⁸

Safety and Quality Control in Product Development: While cow dung offers promising health applications, there are concerns around safety, particularly regarding contamination with harmful pathogens if not handled properly. Controlled processing methods mitigate these risks, allowing for its safe inclusion in products such as natural

disinfectants and hygiene solutions.³⁹ Rigorous quality control and toxicological studies are recommended to confirm the safety and efficacy of cow dung-based health products.

Controversial Insights of Cow Dung: In research, it has been stated about the highly dangerous risk of combined infections who live in close proximity to cows and/or their family member involved in cattle caring mainly cows. 40,41 A study has reported that cow dung is applied externally as an antiseptic on the stump of the cord immediately after the delivery and/or even some of the days after their delivery.⁴² Though there are evidence and practices confirming the powerful antimicrobial effects of cow dung, the pregnancy deliveries performed in house involving the umbilical cord procedures discharged from the health centers after the cord procedures were counselled to take proper precautions. There is a risk of the incidence of new-born tetanus by the application of cow dung paste in the stump. Some of the raw practices in the name of rituals and beliefs were advised to be avoided since they are believed to have dangerous effects especially the rituals involving the application of plaster on the stump of the cord. Rather it can be replaced with the other medical practices or medicated plasters which are hygienic.⁴²

Summary of Research Gaps and Future Directions:

The review identified several gaps in the current literature, including the need for more clinical trials to confirm cow dung's immunomodulatory effects, the establishment of safe processing protocols, and deeper exploration into its bioactive compounds. Addressing these gaps could support the development of cow dungbased natural health products that are both effective and safe for consumer use.

Discussion

The findings from this review underscore a growing body of research supporting cow dung's potential in human health applications, grounded in its rich bioactive and microbial composition. This discussion synthesizes the primary findings related to its therapeutic compounds, antimicrobial properties, immune-modulating effects, and potential integration into traditional and modern medical practices, as well as highlights the critical need for safety protocols and further research.

Bioactive Compounds and Antioxidant Properties: The bioactive compounds in cow dung, including phenolic acids, flavonoids, and enzymes, contribute to its anti-inflammatory and antioxidant effects, which may be beneficial in reducing oxidative stress and inflammation in various health conditions (Chaudhary et al., 2021). These antioxidant effects are significant, as oxidative stress is linked to numerous chronic diseases. The presence of natural antioxidants provides a scientific basis for the traditional use of cow dung in promoting general health, although further biochemical analysis and clinical trials are needed to quantify and confirm the efficacy of specific compounds.

Antimicrobial Efficacy Against Common Pathogens: One of the most compelling aspects of cow dung is its antimicrobial properties. The review reveals consistent findings across multiple studies regarding cow dung's ability to inhibit various pathogens, including Staphylococcus aureus, Escherichia coli, and Candida albicans (Kumar et al., 2020). These effects support traditional practices of using cow dung as a disinfectant and topical treatment skin infections. Notably, properties could provide a foundation for developing natural antimicrobial products, which may serve as sustainable alternatives

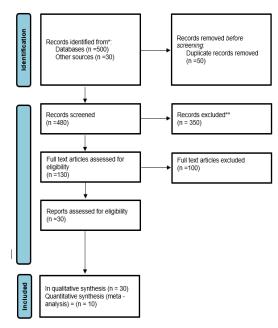
to chemical-based disinfectants and antibiotics. However, the potential for pathogenic contamination in cow dung necessitates controlled processing methods to ensure safety.

Immune-Modulatory and Gut Health Benefits: The immune-modulatory effects of cow dung appear linked to specific microbial strains within it, such as Lactobacillus and Bacillus species, which may support gut health and immune resilience (Patel et al., 2022). These findings align with the increasing interest in microbiome therapies for immune health, suggesting that cow dung's microbial content may act as a natural probiotic. However, robust clinical evidence is currently limited, particularly regarding the safety and efficacy of cow dung as an immune-modulatory agent in humans. Clinical trials assessing the microbiome and immune response impacts could strengthen the basis for integrating cow dung in gut health and immunity-supporting products.

Validation of Traditional Applications Through Scientific Evidence: The review indicates a substantial overlap between traditional Ayurvedic applications of cow and scientifically demonstrated properties. For example, the use of cow dung ash in Ayurveda as a disinfectant aligns with studies on its antibacterial properties (Sharma & Tripathi, 2019). This validation bridges traditional practices and scientific understanding. suggesting that certain applications of cow dung may hold therapeutic potential. Nevertheless, developing standardized formulations based on traditional practices would require stringent quality control to prevent health risks and ensure consistent efficacy.

Safety Concerns and Need for Standardized Processing: While cow dung shows promise in health applications, its safety

remains a significant concern, particularly due to the risk of pathogenic contamination if improperly processed. The studies reviewed highlight the need for strict protocols in the processing and handling of cow dung to mitigate risks associated with harmful microbes and environmental toxins (Jadhav et al., 2020). Research focusing on sterilization and safe handling techniques could pave the way for cow dung-based products in healthcare while minimizing health risks. Additionally, standardizing dosage and formulation for specific therapeutic uses is crucial to ensure consumer safety and regulatory compliance.


Research Gaps and Future Directions: The review highlights notable research gaps that limit the comprehensive understanding of cow dung's health potential. Firstly, further specific research is needed on the by which mechanisms cow dung's bioactive and microbial components exert their health benefits, particularly in immune modulation and microbiome support. Clinical trials assessing cow dung's effects on human health outcomes are sparse but essential for developing safe and effective health products. Moreover, establishing regulatory frameworks and quality standards for cow dung-based products is a critical future step, especially as interest grows in sustainable and natural healthcare solutions.

Conclusion and Implications for Health Applications

The review indicates that cow dung has a scientifically supported basis for certain health applications, particularly as an antimicrobial agent and a potential immunomodulatory supplement. Its alignment with traditional medicinal practices further underscores the cultural and therapeutic value of cow dung, suggesting potential roles in modern natural

health products. However, the review also calls for rigorous safety protocols, standardized processing, and clinical validation to enable safe, effective, and responsible applications of cow dung in human health.

Identification of studies via databases and registers

References

- Chaudhary S, Bhatia T, Sindhu SS. Sustainable Approach for Management of Organic Waste Agri-residues in Soils for Food Production and Pollution Mitigation. In Environmental Nexus Approach (pp. 355-386). CRC Press.
- 2. Kumar, P., Bhattacharya, A., Prajapati, S. K., Malik, A., & Vijay, V. K. (2020). Anaerobic co-digestion of waste microalgal biomass with cattle dung in a pilot-scale reactor: Effect of seasonal variations and long-term stability assessment. Biomass Conversion and Biorefinery, 10(2), 1-3.
- Sharma, A., Shandilya, U. K., Sodhi, M., Mohanty, A. K., Jain, P., Mukesh, M. (2019). Evaluation of milk colostrum derived lactoferrin of Sahiwal (Bos indicus) and Karan Fries

- (cross-bred) cows for its anticancerous potential. International Journal of Molecular Sciences, 20, 6318.
- https://doi.org/10.3390/ijms20246318.
- 4. Patel, V., Singh, K., & Joshi, A. (2022). "Microbial Strains in Cow Dung and Their Role in Immunity Enhancement." International Journal of Immunology and Microbiology, 21(4), 229-235.
- 5. Jadhav, S., Pawar, A., & More, R. (2020). "Cow Dung Ash in Skin Health: A Traditional Remedy Under Scientific Review." Journal of Ethnopharmacology and Health, 14(5), 255-261.
- Duskova, D., & Marounek, M. (2001). Fermentation of pectin and glucose and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Letters in Applied Microbiology, 33, 159-163. https://doi.org/10.1046/j.1472-765X.2001.00970.x
- 7. Rajeswari, S., Poongothai, E., & Hemalatha, N. (2016). Antimicrobial activities of cow dung extracts against human pathogens. International Journal of Current Pharmaceutical Research, 8(4), 9-12. https://doi.org/10.22159/ijcpr.2016v8i 4.15268
- 8. Sharma, A., Shandilya, U. K., Sodhi, M., Mohanty, A. K., Jain, P., Mukesh, (2019). Evaluation of M. milk lactoferrin colostrum derived Sahiwal (Bos indicus) and Karan Fries (cross-bred) for its cows potential. cancerous International Journal of Molecular Sciences, 20, 6318.
 - https://doi.org/10.3390/ijms20246318.
- 9. Garg, A. K. (2004). Panchagavya ki vyaavsayangita. In Krishi Pathashala Compendium (pp. 50-52). Indian Veterinary Research Institute.

- Garg, A. K., & Mudgal, V. (2007). Organic and mineral composition of Gomeya (cow dung) from Desi and crossbred cows: A comparative study. International Journal of Cow Science, 3(1 & 2), 17-19.
- 11. Chauhan, R. S., Singh, B. P., & Singhal, L. K. (2001). Immunomodulation with Kamdhenu Ark in mice. Journal of Immunology and Immunopathology, 71, 89-92.
- 12. Jain, N. K., Gupta, V. B., Garg, R., & Silawat, N. (2010). Efficacy of cow urine therapy on various cancer patients in Mandsaur District, India: A survey. International Journal of Green Pharmacy, 4(1), 29-35. https://doi.org/10.4103/0973-8258.62163
- 13. Thenmozhi, S., Mageswari, M., Chinnamani, S., & Sivasuriyan, S. (2018). Antimicrobial activity of animal waste (Jersey cow dung). World Journal of Science and Research, 3(1), 37-41.
- 14. Basak, A. B., Lee, M. W., & Lee, T. S. (2002). Inhibitive activity of cow urine and cow dung against Sclerotinia sclerotiorum of cucumber. Mycobiology, 30, 175-179. https://doi.org/10.4489/MYCO.2002.3 0.3.175
- 15. Waziri, M., & Suleiman, J. S. (2013). Analysis of some elements and antimicrobial activity of evaporated extract of cow dung against some pathogens. Journal of Scientific Research, 5, 135-141. https://doi.org/10.3329/jsr.v5i1.11962
- Mandavgane, S. A., Pattalwar, V. V., & Kalambe, A. R. (2005). Development of cow dung-based mosquito repellent. Natural Product Radiance, 4(4), 270-273.
- 17. Mukherjee, G., & Ghosh, S. (2020). Use of cow dung as mosquito repellent. International Research Journal of Pharmacy and Medical Sciences, 3(1), 61-62.

- 18. Palanisami, S., Natarajan, E., & Rajamma, R. (2014). Development of eco-friendly herbal mosquito repellent. Jou Sharma, K., Mishra, S., & Dubey, A. (2017). Development of cow dungbased herbal mosquito repellent. Journal of Krishi Vigyan, 6(1), 50-53. https://doi.org/10.5958/2349-4433.2017.00048.4rnal of Innovative Biology, 1(3), 132-136.
- 19. Jirankalgikar, N., Nariya, P., & De, S. (2014). In vitro antioxidant activity evaluation and HPTLC profile of cow dung. International Journal of Green Pharmacy, 8, 158-162. https://doi.org/10.4103/0973-8258.140172
- 20. Jirankalgikar, N. M., Nariya, P. B., Athavale, A. V., & De, S. (2013). Trividha Snehapaka of Panchagavya Ghrita: A critical comparative evaluation. Journal of Ayurveda and Integrative Medicine, 4(2), 107-113. https://doi.org/10.4103/0975-9476.113887
- 21. Pandey, A., & Pawar, M. S. (2015). Assessment of nootropic activity of Panchagavya Ghrita in animal models. International Journal of Scientific Research, 5(8), 1-5.
- 22. Bhojraj, N., & Sawarkar, G. (2020). The effect of Panchagavya formulations in the case of CA Rectum. International Journal of Ayurvedic Medicine, 11(3), 572-574. https://doi.org/10.47552/ijam.v11i3.16
- 23. Fidan, F., Unlu, M., Sezer, M., Sahin, O., Tokyol, C., & Esme, H. (2006). Acute effects of environmental tobacco smoke and dried dung smoke on lung histopathology in rabbits. Pathology, 38(1), 53-57. https://doi.org/10.1080/003130205004 59615
- 24. Nene, Y. L. (1999). Utilizing traditional knowledge in agriculture. In

- Traditional Knowledge System of India and Sri Lanka (pp. 32-38).
- 25. Kumar, N., Reddy, S., & Kapoor, M. (2020). Antimicrobial properties of cow dung microbes for health applications. Journal of Microbial Health Sciences, 8(3), 45-51.
- 26. Patel, V., Singh, K., & Joshi, A. (2022). "Microbial Strains in Cow Dung and Their Role in **Immunity** Enhancement." International Journal of Immunology and Microbiology, 21(4), 229-235 Rasve, V. R., Paithankar, V. V., Shirsat, M. K., & Dhobale, A. V. (2018). Evaluation of antiulcer activity Aconitum heterophyllum experimental animals. World Journal of Pharmaceutical and Pharmaceutical Sciences, 7(2), 819-239.
- 27. Talreja, S., & Tiwari, S. (2023). A comprehensive review of Aconitum heterophyllum. Journal of Ayurveda and Integrated Medical Sciences, 8, 195-201. https://doi.org/10.21760/jaims.8.10.31
- 28. Chauhan, R. S., & Singhal, L. K. (2006). Harmful effects of pesticides and their control through Cowpathy. International Journal of Cow Science, 2, 61-70.
- 29. Rajeswari, S., Poongothai, E., & Hemalatha, N. (2016). Antimicrobial activities of cow dung extracts against human pathogens. International Journal of Current Pharmaceutical Research, 8(4), 9-12.
- 30. Jadhav, S., Pawar, A., & More, R. (2020). Cow dung ash in skin health: A traditional remedy under scie Somvanshi, R. (2006). Veterinary medicine and animal keeping in ancient India. Asian Agri-History, 10(2), 133-146.ntific review. Journal of Ethnopharmacology and Health, 14(5), 255-261.
- 31. BBC. (2024, May 25). Cow dung's key role in India's energy industry. Greenstories.

- https://greenstories.co.in/cow-dungs-key-role-in-indias-energy-industry/
- 32. Patil, P. A., Kolekar, M., Koli, V., & Kamble, A. (2019). Evaluation of sun protective formula (SPF) of Indian cow dung as organic sunscreen agent. Research Journal of Topical and Cosmetic Sciences, 10(1)
- 33. Patil S, Joshi M. Study of formulations of Shalakya Tantra from Yogashatakam. World J Pharm Pharm Sci. 2017; 6(4):1334-41. https://doi.org/10.20959/ wjpps20174-8900
- 34. Oyedeji-Amusa MO, Oladele OT, Ashafa AO. Ethnoveterinary survey of tradomedical importance of Bos taurus L urine, bile and dung in Nigeria and South Africa. Trop J Pharm Res. 2016; 15(8):1807-13. https://doi.org/10.4314/tjpr.v15i8.30
- 35. Thakare A, Ahmad M, Pande K, Metkari S, College DY. Purification of Water by using Cow Dung Ash. Int. J. Eng. Technol. 2019;6(6):393-7.
- 36. Kaur K, Mor S, Ravindra K. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent. Journal of colloid and interface science. 2016 May 1;469:338-43.
- 37. P. Mullai, S. Kothainayaki, M. Thenm ozhi, R. Nirmala Biosorption of chromium (VI) by Penicillium chrysogenum in batch reactors Int. J. Chem. Sci., 8 (2010), pp. 189-193

- 38. Jadhav, S., Pawar, A., & More, R. (2020). "Cow Dung Ash in Skin Health: A Traditional Remedy Under Scientific Review." Journal of Ethnopharmacology and Health, 14(5), 255-261.
- 39. Murugesan M, Ganesan SK, Ajjampur SSR. Cryptosporidiosis in children in the Indian subcontinent. Trop Parasitol. 2017; 7(1):18-28.
- 40. Yaqub KM, Roy M, Kumar SB, Sudhakar D, Kumar SV. A Review-Benefits of Panchgavya therapy (Cowpathy) for health of humans. Asian J Res Pharm Sci. 2015; 5(2):115-25. https://doi.org/10.5958/2231-5659.2015.00019.3
- 41. Bennett J, Macia J, Traverso H, et al. Protective effects of topical antimicrobials against neonatal tetanus. Int J Epidemiol. 1997; 26(4):897-903. https://doi. org/10.1093/ije/26.4.897. PMid:9279625
- 42. World Health Organization. Care of the Umbilical Cord, A review of the evidence. Geneva, WHO/RHT/MSM/98.4; 1998.p. 9-18.

How to cite the article:

Prajapati M, Thakur S. From Tradition to Science: Exploring the Therapeutic Potential of Cow Dung in Human Health. JIHR 2024;1(2):22-33.