The traditional drug discovery process is slow, expensive, and prone to high
failure rates, with timelines of 10–15 years and costs reaching $1–2 billion.
Recent advancements in artificial intelligence (AI) have revolutionized drug
design by enabling the analysis of vast biomedical datasets, identifying patterns,
and making predictions that streamline and optimize the drug discovery
pipeline. This article explores the transformative role of AI methodologies,
including Machine Learning (ML), Deep Learning (DL), Natural Language
Processing (NLP), and generative models, in accelerating target identification,
lead compound optimization, and predicting drug toxicity or efficacy. AI
applications in drug repurposing, de novo drug design, and the prediction of
drug-target interactions are discussed, showcasing significant reductions in
time and resource requirements. The article also highlights critical challenges,
such as data quality, model interpretability, and regulatory concerns, which
must be addressed to fully realize the potential of AI in drug discovery. With
continued advancements and collaboration between computational and
pharmaceutical sciences, AI promises to revolutionize drug development,
paving the way for personalized and precision medicine.
1. Wouters OJ, McKee M, Luyten J.
Estimated Research and Development
Investment Needed to Bring a New
Medicine to Market, 2009-2018
[published correction appears in
JAMA. 2022 Sep 20;328(11):1110.
doi: 10.1001/jama.2022.14317
2. Vora LK, Gholap AD, Jetha K, Thakur
RRS, Solanki HK, Chavda VP.
Artificial Intelligence in
Pharmaceutical Technology and Drug
Delivery Design. Pharmaceutics.
2023;15(7):1916.
doi:10.3390/pharmaceutics15071916
4. Paul D, Sanap G, Shenoy S, Kalyane
D, Kalia K, Tekade RK. Artificial
intelligence in drug discovery and
development. Drug Discov Today.
2021;26(1):80-93.
doi:10.1016/j.drudis.2020.10.010
5. Kumar N, Srivastava R. Deep learning
in structural bioinformatics: current
applications and future
perspectives. Brief Bioinform.
2024;25(3):bbae042.
doi:10.1093/bib/bbae042
6. Sun Y, Jiao Y, Shi C, Zhang Y. Deep
learning-based molecular dynamics
simulation for structure-based drug
design against SARS-CoV-2. Comput
Struct Biotechnol J. 2022;20:5014-
5027. doi:10.1016/j.csbj.2022.09.002
7. Agu PC, Afiukwa CA, Orji OU, et al.
Molecular docking as a tool for the
discovery of molecular targets of
nutraceuticals in diseases
management. Sci Rep.
2023;13(1):13398. Published 2023
Aug 17. doi:10.1038/s41598-023-
40160-2.
8. Niazi SK. The Coming of Age of
AI/ML in Drug Discovery,
Development, Clinical Testing, and
Manufacturing: The FDA
Perspectives. Drug Des Devel Ther.
2023;17:2691-2725. Published 2023
Sep 6. doi:10.2147/DDDT.S424991
9. Yadav S, Singh A, Singhal R, Yadav
JP. Revolutionizing drug discovery:
The impact of artificial intelligence on
advancements in pharmacology and
the pharmaceutical industry:
Intelligent Pharmacy. 2024;2(3):367-
380.
https://doi.org/10.1016/j.ipha.2024.02.
009.
10. Meyers J, Fabian B, Brown N. De novo
molecular design and generative
models. Drug Discov Today.
2021;26(11):2707-2715.
doi:10.1016/j.drudis.2021.05.019
11. Vogt M. Using deep neural networks to
explore chemical space. Expert Opin
Drug Discov. 2022;17(3):297-304.
doi:10.1080/17460441.2022.2019704
12. Visan AI, Negut I. Integrating
Artificial Intelligence for Drug
Discovery in the Context of
Revolutionizing Drug Delivery. Life
(Basel). 2024;14(2):233. Published
2024 Feb 7. doi:10.3390/life14020233
13. Cortial L, Montero V, Tourlet S, Del
Bano J, Blin O. Artificial intelligence
in drug repurposing for rare diseases: a
mini-review. Front Med (Lausanne).
2024;11:1404338. Published 2024
May 22.
doi:10.3389/fmed.2024.1404338
14. Wu K, Karapetyan E, Schloss J,
Vadgama J, Wu Y. Advancements in
small molecule drug design: A
structural perspective. Drug Discov
Today. 2023;28(10):103730.
doi:10.1016/j.drudis.2023.103730
15. Meng XY, Zhang HX, Mezei M, Cui
M. Molecular docking: a powerful
approach for structure-based drug
discovery. Curr Comput Aided Drug
Des. 2011;7(2):146-157.
doi:10.2174/157340911795677602
16. Tran TTV, Tayara H, Chong KT.
Artificial Intelligence in Drug
Metabolism and Excretion Prediction:
Recent Advances, Challenges, and
Future Perspectives. Pharmaceutics.
2023;15(4):1260. Published 2023 Apr
17.
doi:10.3390/pharmaceutics15041260
17. Vatansever S, Schlessinger A, Wacker
D, et al. Artificial intelligence and
machine learning-aided drug discovery
in central nervous system diseases:
State-of-the-arts and future
directions. Med Res Rev.
2021;41(3):1427-1473.
doi:10.1002/med.21764
18. Huanbutta K, Burapapadh K, Kraisit P,
et al. Artificial intelligence-driven
pharmaceutical industry: A paradigm
shift in drug discovery, formulation
development, manufacturing, quality
control, and post-market
surveillance. Eur J Pharm Sci.
2024;203:106938.
doi:10.1016/j.ejps.2024.106938
19. Hassija V, Chamola V, Mahapatra
A. . Interpreting Black-Box Models: A
Review on Explainable Artificial
Intelligence. Cogn Comput 16, 45–74
(2024).
https://doi.org/10.1007/s12559-023-
10179-8
20. Oualikene-Gonin W, Jaulent MC,
Thierry JP, et al. Artificial
intelligence integration in the drug
lifecycle and in regulatory science:
policy implications, challenges and
opportunities. Front Pharmacol.
2024;15:1437167. Published 2024
Aug 2.
doi:10.3389/fphar.2024.1437167
21. Rehman AR, Li M, Wu B, Ali Y,
Rasheed S, Shaheen S, Liu X, Luo R,
Zhang J. Role of Artificial Intelligence
in Revolutionizing Drug Discovery,
Fundamental Research. 2024, doi:
https://doi.org/10.1016/j.fmre.2024.04
.021.